m at h . C O / 0 20 52 06 v 1 1 9 M ay 2 00 2 132 - avoiding Two - stack Sortable Permutations , Fibonacci Numbers , and Pell Numbers ∗

نویسندگان

  • Eric S. Egge
  • Toufik Mansour
چکیده

In [W2] West conjectured that there are 2(3n)!/((n+1)!(2n+1)!) two-stack sortable permutations on n letters. This conjecture was proved analytically by Zeilberger in [Z]. Later, Dulucq, Gire, and Guibert [DGG] gave a combinatorial proof of this conjecture. In the present paper we study generating functions for the number of two-stack sortable permutations on n letters avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary permutation τ on k letters. In several interesting cases this generating function can be expressed in terms of the generating function for the Fibonacci numbers or the generating function for the Pell numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 9 M ay 2 00 2 132 - avoiding Two - stack Sortable Permutations

In [W2] West conjectured that there are 2(3n)!/((n+1)!(2n+1)!) two-stack sortable permutations on n letters. This conjecture was proved analytically by Zeilberger in [Z]. Later, Dulucq, Gire, and Guibert [DGG] gave a combinatorial proof of this conjecture. In the present paper we study generating functions for the number of two-stack sortable permutations on n letters avoiding (or containing ex...

متن کامل

1 9 M ay 2 00 2 132 - avoiding Two - stack

In [W2] West conjectured that there are 2(3n)!/((n+1)!(2n+1)!) two-stack sortable permutations on n letters. This conjecture was proved analytically by Zeilberger in [Z]. Later, Dulucq, Gire, and Guibert [DGG] gave a combinatorial proof of this conjecture. In the present paper we study generating functions for the number of two-stack sortable permutations on n letters avoiding (or containing ex...

متن کامل

132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers

We describe the recursive structures of the set of two-stack sortable permutations which avoid 132 and the set of two-stack sortable permutations which contain 132 exactly once. Using these results and standard generating function techniques, we enumerate two-stack sortable permutations which avoid (or contain exactly once) 132 and which avoid (or contain exactly once) an arbitrary permutation ...

متن کامل

ar X iv : 0 80 5 . 09 92 v 1 [ m at h . C O ] 7 M ay 2 00 8 FIBONACCI IDENTITIES AND GRAPH COLORINGS

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

N ov 2 00 6 Permutations Avoiding a Nonconsecutive Instance of a 2 - or 3 - Letter Pattern

We count permutations avoiding a nonconsecutive instance of a two-or three-letter pattern, that is, the pattern may occur but only as consecutive entries in the permutation. Two-letter patterns give rise to the Fibonacci numbers. The counting sequences for the two representative three-letter patterns, 321 and 132, have respective generating functions (1 + x 2)(C(x) − 1)/(1 + x + x 2 − xC(x)) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006